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A tap water jet’s shape

This is it. The very first physics problem that got me hooked.

Figure 1: Water jet flowing out of a tap

In this photo, we can see that the further the water goes down from the tap, the smaller the diameter
of the jet will get. (I think, it’s actually best visible with the shadow.)

As a child, I really wanted to know what was going on here. So, let’s start with a sketch.
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We will assume the jet’s cross section to be a perfect circle and therefore, use its radius r for calculations
instead of its diameter. The cross-section right at the tap will be indicated with a 0. So, the radius there
will be r0, the cross-section area will be A0 = πr2

0, and the water’s velocity when leaving the tap will
be v0. (We will see why we need the velocity, later.)

The depth of the water below the tap will be called h. (Thus, going upwards from the tap makes h

negative.)

r0

h

r

r

−h

Figure 2: Sketch of the water jet

Now, how can we find a relation between h and r?

Well, for a start, we can calculate the actual cross-section areas, which are just the areas of circles:

A =πr2

A0 =πr2
0

Conservation of the volumetric flow rate

The key insight is, that in a certain time interval ∆t, a certain amount of water ∆V emerges from the
tap, which is constant.
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What’s more, the same amount of water has to pass any “plane” of a given lower altitude. If that were
not the case, the water would have to be compressed to shorten the time or to be rarefacted to stretch
the time, yet there is nothing there that would change the water’s density.

In other words, if there is a given amount of water emerging from the tap in a given time that is constant,
the same amount has to hit the sink within that same time.

Now, if we choose the time interval to be really small, the ejected water will form a very small cylindrical
disc. Its height can be denoted as ∆h. So, we get this:

A0

∆h0∆V0 = A0∆h0

A

∆h∆V = A∆h

r

−h

Figure 3: Small disks of water

In the limit of an infinitely small time interval, the quantity

lim
∆t→0

∆V

∆t
= dV

dt

will be constant. This limit is known as the volumetric flow rate. So,
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lim
∆t→0

∆V0
∆t

= lim
∆t→0

∆V

∆t

lim
∆t→0

A0∆h0
∆t

= lim
∆t→0

A∆h

∆t
.

Now, the cross-section areas do not depend on time. So, we get:

A0 lim
∆t→0

∆h0
∆t

= A lim
∆t→0

∆h

∆t

As our time interval ∆t → 0, the water’s velocity v and v0 can be considered constant. Thus,

∆h =v∆t

∆h0 =v0∆t.

We can insert this now. (Down the line, we can also insert the definition of the cross-section areas in
terms of their radii.)

A0 lim
∆t→0

∆h0
∆t

=A lim
∆t→0

∆h

∆t

A0 lim
∆t→0

v0∆t

∆t
=A lim

∆t→0

v∆t

∆t

A0v0 lim
∆t→0

∆t

∆t
=Av lim

∆t→0

∆t

∆t

A0v0 =Av

A0v0 =Av

πr2
0v0 =πr2v

r2 =r2
0v0
v

r = r0√
v/v0

Now, we are almost there, because there is a very easy way to express the velocity v in terms of the
altitude h.
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Conservation of energy

To get to the finish line, we can use the famous conservation of energy. (In particular, the conserved
quantity is the sum of kinetic energy Ekin and potential energy Epot.)

For something of finite mass m, the kinetic energy would be straightforward

Ekin = 1
2mv2.

However, in this case, we deal with infinitely tiny amounts dm of water, which gives us an infinitely tiny
amount of energy. (Remember, the amount dm = ρdV is constant in our setting.) Therefore,

dEkin =1
2v2 dm

dEkin,0 =1
2v2

0 dm

As for the potential energy, we can always add a constant to it. So we set it to zero at the tap:

Epot,0 = 0

With this choice,

Epot = −gh dm,

where g is earth’s gravitational acceleration, which we can, once again, consider to be constant. The
minus sign is due to the fact, that h increases when we go down, which will get us to a state of lower
potential energy.

This implies:

dEkin,0 =dEkin + dEpot

1
2v2

0 dm =1
2v2 dm − gh dm

v2
0 =v2 − 2gh

v2 =2gh + v2
0

v =
√

2gh + v2
0
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Now, recall

r = r0√
v/v0

and insert:

r = r0√
v/v0

r = r0√√
2gh+v2

0
v0

r = r0√√
2g
v2

0
h + 1

Combining the square-roots, we finally arrive at our answer:

r = r0

4

√
2g
v2

0
h + 1

Notice, that the whole 2g
v2

0
-term is constant, if the water velocity on exiting the tap is.

In fact, we could define

λ := v2
0

2g

h′ := h

λ

r′ := r

r0

to see, that the general form of the solution is always a scaled or stretched version of this:

r′ = 1
4√h′ + 1

This will allow for some easy consistency checks.
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Consistency and limits of our solution

Scaling of r and surface tension

As r = r0r′, a larger r0 will lead to a larger r, which makes sense.

However, there is a physical effect, which we have neglected so far. Surface tension.

When r is large, it should be negligible, but when r gets smaller and smaller, it will become a profound
effect in so far, as we will no longer see a continuous jet of water but rather individual droplets.

The wikipedia-article on surface tension has a better picture of this than I could ever hope to take with
my devices:
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Figure 4: Water jet breaks into droplets

Yet, this is nothing I worry too much about, as I only wanted to generally understand the shape of the
water jet and what effects lead to it.
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Scaling of h

This one is a bit more interesting.

Recall,

h = λh′ = v2
0

2g
h′.

So, what happens when we choose a larger λ?

Well, in order to reach a given cross-section radius, h becomes larger, as well. This means, the water
has to fall down further, before the cross-section gets that small.

Since λ increases and decreases with the square of the water’s emerging velocity v0, the same principle
relation holds for the velocity.

This also seems to make sense. If the water exits the tap faster, it takes longer for the cross-section to
get smaller. (Of course, you can experimentally verify this, as well.)

Personal wrap up

While this might not be the most intriguing or challenging physical problem, it is my first one. I probably
cannot convey how proud I was of myself, when I finally found a solution - years after I first wondered
about what was going on with that water.

So, I am especially satisfied to have finished this article and will reward myself with a glass of tap
water.
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