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Lagrange-Hamilton-series part 2 - Multi-dimensional extrema, partial derivatives and the gradient

Introduction

In the last part of this series, we re-iterated the basics for finding extrema of one-dimensional func-
tions.

The fundamental insight was that an extremum (that is, a local one) must have a tangent of slope 0.

This idea can be extended into three dimensions and beyond. We will focus primarily on the 3D-case, i.
e. functions like z(x, y), as this can still be visualized.

For example, consider the function

z(x, y) = 4 − x2 − y2.
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Figure 1: The function z(x, y) = 4 − x2 − y2. A paraboloid. (Which is just a rotated parabola.)

If we forget the y-term for a moment, this is just a flipped and slightly shifted parabola. We would
instantly recognise that there is a maximum at x = 0 and z = 4.

Now, we can just rotate that parabola around the z-axis to find the function we are really interested in -
the function z = 4 − x2 − y2.

Obviously, this function still has a maximum at x = 0 and z = 4, but with an additional constraint of y

also being equal to 0.

We can picture the rotation of the simple parabola together with the rotation of its tangent at the
extreme point to realize that the rotated tangent will form a plane.
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As the tangent in the one-dimensional case must have a slope of 0 and we rotate around the z-axis
which is orthogonal to this tangent, the plane also won’t ascent or descent into any direction.
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Figure 2: The function z(x, y) = 4 − x2 − y2 as a rotation. The tangents through z = 4 form a plane.

The reasoning with a plane that does not ascend nor descend into any direction will work for any
extremum in a three-dimensional situation.

Think of it this way:

If we have a function with a maximum that is three-dimensional we should be able to balance a
wooden plate right onto this maximum. And this plate cannot have a non-zero slope anywhere.

With this insight, let us find a “plane-equation” that allows us to describe a “tangent plane” to a 3-
dimensional function and will let us judge whether it has zero slope into either direction. To do this,
we will start with the general plane equation and after that, we will need to introduce the so-called
partial derivatives.

Preliminary thoughts

The plane equation

Fortunately, it is particularly easy to obtain a vector equation for planes, starting with the vector form
of the straight line equation.

Let us recall this equation for a straight line:
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x⃗l = x⃗0 + λv⃗

x⃗0 was any given point on the straight line, v⃗ was a direction vector and λ is the number of v⃗-steps to
go from x⃗0 to reach a certain point x⃗l on the straight line.

Now, we can construct a plane by simply “sliding” a straight line into any direction w⃗, that is not excatly
parallel to v⃗.

~w

Figure 3: The (thick and dark blue) straight line slides down (and up) in (opposite) direction of the
vector w⃗

The thick and dark blue straight line “slides” in w⃗-direction to create a new straight line (light blue) that
is parallel to the old one. This is repeated with the newly created straight line and the now newly-created
straight line is again parallel to all the existing ones.

These “representative” straight lines form a plane, as illustrated in the following plot:
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Figure 4: “Representative” straight lines form a plane. The colour indicates the z-value at a given
point of the plane.

Now, how can we put actual numbers on that?

We have seen, that we can use “representative” straight lines to form a plane and that these represen-
tatives are parallel to each other. In terms of the straight-line-equation, this means, they all need to
have the same direction vector v⃗ and must differ in the given “initial” point x⃗0.

If we denote the original straight line by 0 and the ith representative by an index i, the set of straight
line equations can be written like this:

x⃗l,i = x⃗0,i + λv⃗

Considering the fact that any given “initial” point arises from a number of “slides” in w⃗-direction, we
can write:

x⃗0,i = x⃗0,0 + iw⃗

Actually, no-one can stop us from using non-integer values for i. (i = 1
2 once again, simply corresponds

to a slide of 1
2 w⃗.)

Thus, we can replace i → µ, where µ is any real number, to get to any possible straight line inside the
plane that is parallel to the original one.

As an equation, this reads

⃗x0,µ = x⃗0 + µw⃗.
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If we insert this, we get our full plane equation:

x⃗l,µ = ⃗x0,µ + λv⃗

x⃗l,µ =x⃗0 + µw⃗ + λv⃗

We rename x⃗l,µ → x⃗p and re-order the terms on the right-hand-side, as is convention:

x⃗p = x⃗0 + λv⃗ + µw⃗

This is our final plane equation.

Notice, that there are infinitely many possible choices for w⃗ that would give us the same plane, as we can
slide our initial point x⃗0 to any point on the next representative straight line.

This would correspond to choosing

⃗x′
0,µ = ⃗x0,µ + λ′v⃗

=x⃗0 + µw⃗ + λ′v⃗

=x⃗0 + µ

(
w⃗ + λ′

µ
v⃗

)
︸ ︷︷ ︸

=:w⃗′

instead of ⃗x0,µ as initial point for the µ-representative.

This last fact will be important for us.

Indeed, it will allow for an easy construction with somewhat basic direction vectors.

Assume, that we want to construct a plane that does not have an infinite slope, i. e. there is no straight
line inside it that is just vertical. Especially, we can exclude xp = const. or yp = const.. (Remember,
we will ultimately be on the look-out for planes that are tangent to 3-dimensional functions. If xp or yp

were constant, this would corespond to an infinite slope.)

Let us construct vectors
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u⃗x =


1
0
ζx

 , u⃗y =


0
1
ζy

 .

ζx and ζy shall be arbitrary at this point and we want to show, that any plane (that satisfies the
aforementioned condition) can be constructed with those two vectors.

This can be achieved, if

λv⃗ + µw⃗ = ρxu⃗x + ρyu⃗y

is possible.

Let’s work this through:

λv⃗ + µw⃗ =ρxu⃗x + ρyu⃗y
λvx + µwx

λvy + µwy

λvz + µwz

 =


ρx

ρy

ρxζx + ρyζy


λvz + µwz =ζx (λvx + µwx) + ζy (λvy + µwy)

In the last step, we replaced ρx and ρy in the last vector component by the first two components.

Next, consider, that λ and µ are arbitrary at this point. Thus, we can divide the whole equation by µ

and redefine ν = λ
µ .

λvz + µwz =ζx (λvx + µwx) + ζy (λvy + µwy)

νvz + wz =ζx (νvx + wx) + ζy (νvy + wy)

0 =νvz + wz − [ζx (νvx + wx) + ζy (νvy + wy)]

0 =νvz + wz − νζxvx − ζxwx − νζyvy − ζywy

0 =


−ζx

−ζy

1

 · [νv⃗ + w⃗]

At this point, the term inside the square brackets can basically be anything. (Indeed, it will be a vector
inside the plane.) So, we can redefine
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t⃗ =


tx

ty

tz

 := νv⃗ + w⃗

With this new vector t⃗, the question becomes, whether we can always find ζx and ζy in such a way, that
the following equation is satisfied:

0 =


−ζx

−ζy

1

 · [νv⃗ + w⃗]

0 =


−ζx

−ζy

1

 · t⃗

0 =


−ζx

−ζy

1

 ·


tx

ty

tz


0 =tz − ζxtx − ζyty

ζx = 1
tx

(tz − ζyty)

Indeed, we should be able to find ζx and ζy in a way, that the equation is satisfied except for some
edge cases.

The first edge case is tx = 0, ty ̸= 0. In this case, ζx becomes irrelevant and the equation reduces to

tz − ζyty = 0,

i. e. we can still find a valid combination of ζx and ζy. (If ty = 0 while tx ≠ 0, we get the
symmetric case with x and y exchanged.)

Now, what if tx = ty = 0?

Recall the definition
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t⃗ =νv⃗ + w⃗

t⃗ =λ

µ
v⃗ + w⃗

µt⃗ =λv⃗ + µw⃗

As we can see (and pointed out before), t⃗ is just any vector residing inside the plane. (With an arbitrary
length.) Thus, its x- and y-component cannot be 0 at the same time, because otherwise, the vector
would correspond to a vertical straight line, i. e. to an infinite slope. This is, what we excluded from the
beginning.

So in fact, we can always describe a plane that does not include vertical straight lines by direction
vectors like this:

u⃗x =


1
0
ζx

 , u⃗y =


0
1
ζy



Partial derivatives

So far, we have dealt with one-dimensional functions like f(x) and their derivative

df

dx

∣∣∣∣
x=x0

= lim
x→x0

f(x) − f(x0)
x − x0

.

Or, if we do not look for a specific point but rather a derivative function,

f ′(x) = df

dx
= lim

h→0

f(x + h) − f(x)
h

.

Let us rewrite that a bit:

df = f ′(x)dx

The total differential df on the left-hand-side can be interpreted as a tiny change to the function f ,
evaluated at x, which is per the right-hand-side proportional to the tiny change dx in x, where the
“local proportionality factor” is the first derivative f ′(x).
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Of course, this only works for infinitely tiny dx and df , because we approximate the function f(x)
around x as a straight line. (Its tangent.)

Now, we want to step it up to a function f(x, y) of two variables.

Let us begin with a simple plane to get a feeling for everything. A plane can be written as a function

z(x, y) = mxx + myy.

One example is given in the plot below.
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Figure 5: The simple plane z = x + y.

The plot shows the case of mx = my = 1.

Now, we can define

z(x + ∆x, y + ∆y) =: z(x, y) + ∆z

to write:

z(x, y) + ∆z =mx (x + ∆x) + my (y + ∆y)

z(x, y) + ∆z =mxx + mx∆x + myy + my∆y

∆z =mx∆x + my∆y
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This one was easy. We can just replace ∆ → d, to get an expression for the total differential in z:

dz = mxdx + mydy

Now, consider a (potentially squished) paraboloid:

z(x, y) = mxx2 + myy2

Again, defining

z(x + ∆x, y + ∆y) =: z(x, y) + ∆z,

we can write:

z(x, y) + ∆z =mx (x + ∆x)2 + my (y + ∆y)2

=mx

(
x2 + 2x · ∆x + ∆x2

)
+ my

(
y2 + 2y · ∆y + ∆y2

)
∆z =mx

(
2x · ∆x + ∆x2

)
+ my

(
2y · ∆y + ∆y2

)
∆z =mx (2x + ∆x) ∆x + my (2y + ∆y) ∆y

Now, if we replace ∆ → d, i. e. we make the deltas infinitesimal, they do not really contribute to the
sums, anymore. (For any finite 2x, 2y. I. e. strictly speaking, we need to exclude (x, y) = (0, 0).)

Therefore,

2x + dx ≈2x

2y + dy ≈2y.

Notice, we don’t get rid of the factors dx and dy in this manner!

We obtain:

dz = 2mxxdx + 2myydy

Let’s do one more:
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z(x, y) = mx · y

As usual, we start with our deltas:

z(x, y) + ∆z =m (x + ∆x) · (y + ∆y)

=m (xy + y∆x + x∆y + ∆x∆y)

∆z =m (y∆x + x∆y + ∆x∆y)

As ∆ → d, the term ∆x∆y is small, even compared to the other infinitesimal summands. (Remember,
we are doing a limiting process. For any finite but small ∆x, ∆y, this last term will be approximately
negligible.)

Thus:

dz = mydx + mxdy

We can notice a pattern. We always end up with something of the form

dz = gx(x, y)dx + gy(x, y)dy,

where the g-functions have some dependency on x and y.

Is this a general thing?

After all, we have seen, that this is exactly possible for a plane. And using tangent planes was
our whole objective.

Now, how can we find those g-functions?

Consider the function

z(x, y) = x2,
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that only depend on x, but is also defined for y, i. e. for each y, we get the same zy(x)-relation, which
in this case, happens to be a parabola.
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Figure 6: A parabola “sliding” in y-direction.

At any given point of this function, going a tiny step dy into the y-direction does not change the
z-coordinate at all, i. e. dz = 0. In order to satisfy this, gy has to be equal to 0:

gy(x, y) = 0

Effectively, this reduces our differential equation to a 1-dimensional problem:

dz = gx(x, y)dx

If we had a function z, that would only depend on x, we would be done at this point, since this equation
really is just the definition of a first derivative.

But wait! This is exactly the case, here. z = z(x) actually is a function that only depend on x, albeit
being also defined for another variable y, but without formal dependency.

Therefore, we can deduce:

dz =z′(x)dx

z′(x) =gx(x, y) = gx(x)
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But what happens to a function that actually depend on y?

Well, let us consider the function

z(x, y) = x · y

again:
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Figure 7: The function z(x, y) = x · y.

This time, let us picture x as full variable but y as a parameter that will only assume discrete values.
This is, again, the idea of choosing some “representatives” for the whole function. In this case, these
are representative cross-sections at constant values of y, making our function a group of 1-dimensional
functions

zy(x) = y · x :
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Figure 8: The group of “representative” functions zy(x) = x · y.

This last plot shows z versus x for selected values of the so-considered “parameter” y. The skewed
gray line is a parallel line to the y-axis (i. e. x = 10 and z = 0 are kept constant), while the vertical gray
lines represent a constant x and y from z = 0 to the z = zy(x = 10), i. e. the line straight down from
the function to the x-y-plane.

As we see, for each given y, we get a straight line representing the group zy(x), whose slope is just y:

z′
y(x) = y

Alright, for every function of the group, we get a constant slope y, which is, indeed, what we expect for
a straight line.

Now, we can certainly evaluate the group of functions zy for any y we want and therefore, we can define
a derivative in x for any given y. All that is left to do is the step from discrete groups of 1-dimensional
functions to a continuous 2-dimensional function.

In order to do that, let us think about what a discrete, constant y actually means for our problem.

Recall, that for z = z(x, y),

dz = gx(x, y)dx + gy(x, y)dy.

Dealing with a discrete group of functions means, that we are limited to one value of y and that one
alone. No small shifts in y are possible, not even infinitesimal ones.
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In other words:

dy = 0

However, this is something we cannot only achieve with a group of functions but also with the 2-
dimensional function by requiring y to be kept constant and let the whole shift dz be due to a shift
dx.

Therefore, we can find gx for any given y0 simply by:

gx(x, y0) = dz(x, y0)
dx

y0 just indicates that y = y0 shall be kept constant. However, we might as well just write y instead of
y0 - as long as we keep in mind that y is meant to be kept constant.

With this, we can define the partial derivative gx of z with respect to x as the total derivative (i. e. the
“regular” one that we already know) when y is kept and considered constant.

The partial derivative is denoted as a differential quotient with a “rounded d” instead of a regular
one:

∂z(x, y)
∂x

= dz(x, y)
dx

∣∣∣∣
y=const.

The “rounded d” ∂ is sometimes called “del” when reading out loud a formula. However, this might be
confusing, because the nabla operator ∇ (we will get to that guy, later) is also sometimes referred to
as “del”.

Sadly, I am not aware of any unambiguous convention on how to read the ∂.

Notice, that the definition can seamlessly be generalized to higher dimensions.

Suppose, we have a function f that depends on N variables {x1, x2, . . . , xN }:

f(x1, x2, . . . , xN )

The partial derivative with respect to any variable xi can then be defined as:
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∂f

∂xi
:= df

dxi

∣∣∣∣
xj=const., j ̸=i

Sometimes, the partial derivative is also written using this shorthand notation:

∂xf := ∂f

∂x

Summary

First of all, if you want to read more on partial derivatives, you can find multiple sources like textbooks,
online-courses or wikipedia.

Then, the really important take-away is, that you can just take partial derivatives of a function f with
respect to any of its arguments {x1, x2, . . . , xN } by keeping all the other arguments constant:

∂xif := ∂f

∂xi
:= df

dxi

∣∣∣∣
xj=const., j ̸=i

The total differential of f becomes:

df =
N∑

i=1

∂f

∂xi
dxi

Examples for using partial derivatives

In theory, we now have mastered partial derivatives, but in practice, there is usually a bit of confusion
as to where partial derivatives can be used and where we need total (i. e. “regular”) derivatives.

Let us discuss some examples, so we get a better feeling for all this.

Chain rule

Consider the function

f(x) = (ln x)2 = ln2 x.
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We can find the derivative as

f ′(x) = 2 ln x · 1
x

= 2ln x

x
.

To find this derivative, we used the hopefully well-known chain rule.

So far, this is nothing new. The chain rule formally states:

d

dx
[f (y(x))] = f ′ (y(x)) · y′(x)

Here, it is worth being careful about what depends on what. The function f depends on another
function y (the logarithm in the example above), which depends on a variable x.

Thus, the whole thing ultimately depends only on x, since y depends on x and cannot be varied
independent from x.

However, we completely ignore this fact when taking the derivative f ′. We do that “pretending” that y

is our only independent variable.

Now, what do we actually calculate here?

Remember the function

z(x, y) = x2

from the last section.

Let us exchange the variables x and y:

z(x, y) = y2

We can make the function z(x, y) into the function f(x) by setting

y(x) = ln x,

which is like cutting through the function z, like we did before. But instead of keeping y constant, i. e
cut along a straight line, we cut along the function y(x).
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Figure 9: The function z(x) = ln2 x (black), constructed from z = y2 (mesh) and “cutting” along
y = ln x (rainbow curve) and projecting into x-z-plane.

Here, we see the function z(x, y) = y2 represented as the rainbow-colored mesh. The rainbow-colered
curve is what we get, if we cut along y(x) = ln x.

Finally, we can “project” the rainbow-curve onto the x-z-plane to get the function z(x) = ln2 x.

(We used the z-axis to represent the z-function, which coincides with f(x).)

The fact that we could “project” the rainbow curve onto a plane means, that we effectively reduce the
function to depend on just one instead of two variables.

In the equations, this is reflected by the fact that there actually is a function y(x), that relates the two
variables.

Recall the relation between the differentials for a function z(x, y):

dz = ∂z

∂x
dx + ∂z

∂y
dy

In our case, there is a relation between y and x and thus, we can rewrite dy in terms of dx like

dy = y′(x)dx.

Inserting yields:
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dz = ∂z

∂x
dx + ∂z

∂y
· y′(x)dx

Now, we can rewrite

y′(x) = ∂y

∂x
,

where it does not matter whether we choose a partial or total derivative, since there are no other
variables that must be kept constant.

Combining these equations gets us to:

dz =
[

∂z

∂x
+ ∂z

∂y
· ∂y

∂x

]
dx

⇒ dz

dx
= ∂z

∂x
+ ∂z

∂y
· ∂y

∂x

Let us now consider a function of the form f(g(x)), i. e. a function that we would differentiate using
the chain rule. Relating this to the above equation means replacing z → f and y → g:

df

dx
= ∂f

∂x
+ ∂f

∂g
· ∂g

∂x

As stated before,

∂g

∂x
= g′(x)

and since f only directly depends on g,

∂f

∂x
= 0.

Using those insight, we get:

df

dx
= ∂f

∂g
· g′(x)

Now, what is up with ∂f
∂g ? Well, this is a partial derivative of f with respect to g, which means that we

can replace it by the regular derivative if the function f only depends on the “variable” g, i. e.:

∂f

∂g
= f ′(g) = f ′(g(x))

20 / 45



Lagrange-Hamilton-series part 2 - Multi-dimensional extrema, partial derivatives and the gradient

Inserting gets us back to our original chain rule:

df

dx
= f ′(g(x)) · g′(x)

Amazing! Partial derivatives as they appear in the equation relating the differentials (dz = ∂xzdx +
∂yzdy) and the regular old definition of a variable change (dy = y′(x)dx) directly gets us to the regular
old chain rule!

If you want to get a somewhat more visual explanation on the chain rule, I have to point you to the
respective video on the great channel 3blue1brown.

However, I also tried to visualize this. Unfortunately, in one single image, everything gets quite clut-
tered.

z(x = 0, y) = y2

y(x) = lnx

z(y(x))
dz
dx

dy
dx

∂z
∂x

x

y

z

Figure 10: Where we can find partial and total derivatives.

The graphic shows our function z(y(x)) = (ln x)2 (black curve), where y(x) = ln x (blue curve) and
z(y) = z(x = 0, y) = y2 (red curve).

The rainbow-colored curve is the function y(x) “projected” onto the function z(x, y) = y2, which is
not completely visualized due to the lack of space. (The projection for the rightmost shown point of
the function goes along the vertical dashed blue line.)

Once again, projecting the rainbow-curve into the x-z-plane gives us the function z(y(x)). (Again, the
projection goes along the dashed blue line, but of course, this time, it is the other one.)

The other dashed lines are for (hopefully) better orientation. In particular, the dashed black lines don’t
really have any meaning beyond showing where particular points of our functions fall inside a primary
plane or onto any af the axes.
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The red dashed line should remind you, that this is also the projection for the rainbow-curve into the
y-z-plane.

As for the derivatives - they are not shown directly but only by one respective representative tangent.

This means, that the gray, dark blue and orange straight lines are the tangents to the black, cyan and
red functions, respectively. The slope of these tangents is given by the total or partial derivatives of the
functions in the tangent points.

(Notice, that we have chosen the special case of ∂z/∂x = 0 to prevent even more confusion.)

Multi-dimensional chain rule

We can now generalize the chain rule to multiple dimensions. Suppose, we have two functions x(t)
and y(t), which both depend on the same variable t.

Furthermore, consider a function z(x(t), y(t)) and let us construct the derivative, starting with the
differentials of x and y. (Yes, we have seen this before. . . )

dz = ∂z

∂x
dx + ∂z

∂y
dy

Since x and y ultimately depend on t, let us do the corresponding variable changes:

dx =∂x

∂t
dt

dy =∂y

∂t
dt

Let us insert, collect like terms and re-arrange:

dz = ∂z

∂x
dx + ∂z

∂y
dy

= ∂z

∂x
· ∂x

∂t
dt + ∂z

∂y
· ∂y

∂t
dt

=
[

∂z

∂x
· ∂x

∂t
+ ∂z

∂y
· ∂y

∂t

]
dt

⇒ dz

dt
= ∂z

∂x
· ∂x

∂t
+ ∂z

∂y
· ∂y

∂t

That wasn’t too bad. . .
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We can now step it up.

Consider a scenario, where we have N independent variables {x1, x2, . . . , xN } and a set of M functions
that depend on those variables:

{y1(x1, x2, . . . , xN ), y2(x1, x2, . . . , xN ), . . . , yM (x1, x2, . . . , xN )}

A useful shorthand is defining the vector

x⃗ =


x1

x2
...

xN


and say, that every function yi = yi(x⃗) depends on this very vector.

Now, let z = z(y1(x⃗), y2(x⃗), . . . , yM (x⃗)) be a M -dimensional function that depends on those functions
yi.

We can easily construct the differential:

dz =
M∑

i=1

∂z

∂yi
dyi

And now, as we can do the same for the dyi:

dyi =
N∑

j=1

∂yi

∂xj
dxj

All together, we get the generalized multi-dimensional chain rule:

dz =
M∑

i=1

∂z

∂yi
·

 N∑
j=1

∂yi

∂xj
dxj


=
∑
i,j

∂z

∂yi
· ∂yi

∂xj
dxj
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Unfortunately, we cannot rewrite this as one total derivative, since the function ultimately depends on
N xj instead of just one.

You probably heard about this before, but we need to be careful about notation.

In particular:

∂z

∂y
· ∂y

∂x
̸= ∂z

∂x

Partial derivatives written as a “fraction” are not really fractions! Most importantly, we cannot “cancel
factors”, but instead, we must evaluate partial derivatives individually.

Contour line equations

Once again, let us consider a function z(x, y) whose differential is

dz = ∂z

∂x
dx + ∂z

∂y
dy.

We could also rewrite this as a vector:

r⃗(x, y) =


x

y

z(x, y)


The vector perspective will be helpful in the future. That’s why it is mentioned.

Now, let us have a look at a contour line in z, i. e. all the points on the function, where z = z0 has a
constant value.

You can picture the function z(x, y) as a hilly landscape.

Then think of a hiking trail that follows the slopes of the hills, always staying precisely at the same
altitude.

The altitude would correspond to the z-value of our function.
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For example, the following plot shows the function

z(x, y) = 4 − (x − 2)2 − (y − 2)2

rainbow-shaded and the contour line

z = 3.8

in black:

1.6
1.8 2

2.2
2.4

2

2.5

3.6

3.8

4

Figure 11: The function z(x, y) = 4 − (x − 2)2 − (y − 2)2 (rainbow-shaded) and the contour line
z = 3.8 (black).

Now, let us find a general formula for a contour line.

Since z = z0 will be constant, there must be a relation y(x) that links x and y.

In the easiest case, we can just solve the equation

z0 = z(x, y)

for y (or x, if we prefer) to get that relation as a function y(x) (or x(y), respectively).

However, it is possible that we cannot express the relation between x and y as a function, because we
might get multiple possible ys for a given x. (The contour line in the above example is reflecting just
that, since with a circle, we get two values of y for almost all values of x.)

To deal with this fact, we can define an additional parameter t and let x = x(t) and y = y(t).
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In practice, think of yourself following that hiking path and let t indicate the time, you reach any
given point on it.

Indeed, you could, for example, also let t be the total distance you have covered. But I think, there
is benefit in using that rather physically motivated example.

In any case, this illustrates why it should always be possible to find such a parameterization. A
physical path can indeed be followed - in time.

However, we need to limit ourselves to continuous contour lines for now.

To understand, why this might be an issue, picture two mountains next to each other which might
both have a contour line of the same height going around them in a closed loop.

To find a general formula for any contour line to a function z(x, y), let’s start again with our favourite
differential. (Remember, dz = 0 is the very definition of a contour line.)

dz
!= 0 = ∂z

∂x
dx + ∂z

∂y
dy

If it is actually possible to find a function y(x), we can re-arrange:

0 = ∂z

∂x
dx + ∂z

∂y
dy

∂z

∂y
dy = − ∂z

∂x
dx

dy

dx
= y′(x) = − ∂z/∂x

∂z/∂y

Notice, that the partial derivatives on the right-hand-side may themselves be functions of x and y. This
means, that we cannot simply integrate the equation to get our contour-line-function y(x). Calculating
the partial derivatives will let you end up with a differential equation you need to solve. Depending on
the original function z(x, y), this might be an easy task or downright impossible.

Next, we get to the equation for the parameterized case, using

dx =∂x

∂t
dt =: ẋdt

dy =∂y

∂t
dt =: ẏdt.

Be aware, that we use a dot instead of a dash to indicate the derivative with respect to time t. (Again,
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this is something very common in physics. Derivatives with respect to time are so common, that it
makes sense to introduce this extra symbol.)

Now, let’s wrap this up:

0 = ∂z

∂x
dx + ∂z

∂y
dy

0 =∂z

∂y
ẏdt + ∂z

∂x
ẋdt

0 =∂z

∂y
ẏ + ∂z

∂x
ẋ

This is not that easy, anymore, since we need to solve for both, x(t) and y(t), which is rather difficult
when there is only one equation.

However, this was to be expected, as there are infinitely many possible solutions on how to parameter-
ize.

Think of the analogy with t being the time your actual hike took. This says nothing about your
velocity at a given point or time, respectively.

If you ran the first kilometer and after that, took a break before continuing at normal walking
speed, you would get a different parameterization than if you had walked with constant speed.
But still, both would have described the same trail.

The velocity (without proof at this point) is the vector

v⃗(t) =
(

ẋ(t)
ẏ(t)

)
,

i. e. you could, for example, enforce your speed to be constant by requiring

(v⃗(t))2 = ẋ2 + ẏ2 = v2
0.

This would, indeed, give you a second equation to work with. (Albeit not a linear one.)

In summary, the contour line equations (depending on the actual situation) are:
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y′(x) = − ∂z/∂x

∂z/∂y

0 =∂z

∂y
ẏ + ∂z

∂x
ẋ

Let us now get into some examples, again.

Consider z(x, y) = x · y for a start.

Here, we can simply solve for y:

z0 =x · y

y(x) =z0
x

Let us now use the derivative equations:

y′(x) = − ∂xz

∂yz

dy

dx
= − y

x

This is a separable differential equation:

dy

y
= − dx

x

ln |y| = − ln |x| + c

|y| = ec

|x|

Notice, the term ec in the right-hand-side denominator is a positive constant that would represent
positive z0. You need to consider the possible cases for xs and ys to work out the absolute values,
properly, to eventually give you the minus signs you need.

Now finally, let us use the parameterized form:
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0 =∂yzẏ + ∂xzẋ

=xẏ + yẋ

= d

dt
(x · y)

Of course, another integration gets us back to our original equation.

Okay. Next one.

Now, let z(x, y) = xy · exy. This one is not easily solved for either x or y.

The partial derivatives are:

∂xz =y · exy + xy2 · exy

=y · exy · (1 + xy)

∂yz =x · exy + x2y · exy

=x · exy · (1 + xy)

By inserting, most of the stuff cancels:

y′(x) = − ∂xz

∂yz

= − y

x

We have seen this one before. The contour lines for this function are the same as in the last
example.

However - we cannot expect the z-values to also be identical since now, the integration constant
that was identified with z0 in the last example does not have the same meaning.

Tangent plane equation

We can close the loose ends, now.

Recall the vectors
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u⃗x =


1
0
ζx

 , u⃗y =


0
1
ζy

 .

We stated that these vectors can be used to construct the tangent plane at a point x⃗0 =
(x0, y0, z(x0, y0))T on a function z(x, y), whose equation is given by:

x⃗T =x⃗0 + λxu⃗x + λyu⃗y
xT

yT

zT

 =


x0

y0

z(x0, y0)

+


λx

0
λxζx

+


0
λy

λyζy



From the first two components, we can derive

λx =xT − x0

λy =yT − y0

This can be inserted into the third component:

z{T ;x0,y0}(xT , yT ) = z(x0, y0) + ζx · (xT − x0) + ζy · (yT − y0)

Since we are talking about a tangent plane, it should have the same partial derivatives as the original
function around x⃗0. (This really is the summary of everything we have done so far.)

Let us calculate these partial derivatives:

∂z{T ;x0,y0}
∂xT

= ∂z

∂x

∣∣∣∣
x⃗=x⃗0

= ζx

∂z{T ;x0,y0}
∂yT

= ∂z

∂y

∣∣∣∣
x⃗=x⃗0

= ζy

This is nice. We have found our ζx and ζy:
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ζx = ∂z

∂x

∣∣∣∣
x⃗=x⃗0

ζy = ∂z

∂y

∣∣∣∣
x⃗=x⃗0

Therefore, we can now construct the tangent plane direction vectors for each point:

u⃗x(x⃗) =


1
0
∂z
∂x

 , u⃗y(x⃗) =


0
1
∂z
∂y



Notice that again, our whole reasoning can be extended into higher dimensions.

Therefore, we can also consider a function f(x1, x2, . . . , xN ) of N variables and define N vectors
u⃗x1 , u⃗x2 , . . . , ⃗uxN , that form the N -dimensional tangent shape to the function f . (In higher dimensions,
we call this a hyperplane.)

u⃗xi = ∂

∂xi



x1

x2
...

xN

f(x1, x2, . . . , xN )


=



0
...
0
1
0
...
0
∂f
∂xi


The one in the right-hand-side-vector is, of course in the ith component.

What’s more, we just introduced the the “operator notation” for a partial derivative:

∂

∂x
• := ∂•

∂x

When applied to a vector u⃗ = (u1, u2, . . . , uM )T , the partial derivative operator acts component-
wise:
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∂

∂x
u⃗ =


∂

∂xu1
∂

∂xu2
...

∂
∂xuM



The gradient

It is now useful to define the so-called gradient vector for a “test function” f(x, y):

∇f(x, y) :=
(

∂f
∂x
∂f
∂y

)

Of course, we can extend into higher dimensions.

A function

g = g(x1, x2, . . . , xN )

that depends on N variables would have a gradient vector operator like

∇ =


∂

∂x1
∂

∂x2...
∂

∂xN

 ,

meaning

∇g =


∂g

∂x1
∂g

∂x2...
∂g

∂xN

 .

The operator ∇ is called the “nabla-operator” which is sometimes also pronounced as “del”.

In general, the nabla-operator acts on a scalar function that depends on N variables by returning the
N -component-vector of the N partial derivatives of the function to either of the variables.
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Dimensions

Notice, that a function depending on N variables generally lives in a N + 1-dimensional space.

For example, a function f(x, y) = 4 − x2 − y2 (a flipped and shifted paraboloid) depends on two
variables but lives in a 3-dimensional space and could be represented as a vector

f⃗ =


x

y

z

 =


x

y

f(x, y)

 .

In contrast, the gradient vector

∇f =
(

∂f
∂x
∂f
∂y

)

is only two-dimensional, i. e. living in the x-y-plane.

We can visualize this in two dimensions using a colour map for the function and representative vectors
for the gradient.

−2 −1 0 1 2
−2

−1

0

1

2

Figure 12: The function f(x, y) = 4 − (x − 2)2 − (y − 2)2 (rainbow-shaded) and the gradient vector
field (black). Red means high values for f and blue means low ones.

The more the colour is in the red area, the higher the value of the function f is. The more it is blue, the
lower is the function’s value.
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As for the gradient vector field, the length of the arrows is 1
10 of the proper length for better visualiza-

tion.

Interestingly, the vectors all seem to point to the local maximum.. .

Steepest ascent

Indeed, the gradient always points into the direction of locally steepest ascent.

Be aware, that the gradient vector has one dimension less than the function it is applied to. Therefore,
it is not a tangent vector to the function.

In the case of a function of two variables, the gradient is a direction vector in these two dimensions, i.
e. in the x-y-plane, while in contrast, “ascent” would seem to imply going upwards, i. e. increasing
your z-coordinate.

Let us prove this considering a function

f(x1, x2, . . . , xN ) =: f(x⃗)

that has a gradient

∇f =


∂f
∂x1
∂f
∂x2...
∂f

∂xN

 .

Now consider a unit vector

u⃗ =


u1

u2
...

uN

 ,
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meaning it must have a length of 1. (Indeed, it does not have to be a unit vector, as long as we use a
general vector of fixed length.)

Now, we can define any point in the function’s parameter space that is reachable by going from x⃗ into
u⃗-direction as

y⃗(t) = x⃗ + t · u⃗,

where t is telling us, how many “steps” we have to go into u⃗-direction.

Therefore, we can calculate the rate of change in f as derivative df
dt , where f is now considered to be a

function of y⃗:

d

dt
f(y⃗) = ∇y⃗f · d

dt
y⃗ = ∇y⃗f · u⃗

Here, we gave the nabla operator an index y⃗ to indicate, that the partial derivatives are with respect to
y⃗’s components.

Now, the rate of change is just the dot product of the gradient times the direction vector u⃗. This is, of
course, largest, when both point into the same direction.

q.e.d.

In turn −∇z is the direction of steepest descent.

In any case, we can visualize this for a plane. (Remember, that for an infinitely small area around a
given point on a function of two variables, the local behaviour can be approximated by the tangent
plane to this point.)
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Figure 13: A plane with ascend vectors (left) whoose horizontal components are equal to the
respective partial derivative. On the right, this is the same plane represented as contour lines. The
ascend vectors combined form the gradient, which is pointing into the direction of steepest ascend.

The left plot shows a plane with “ascend vectors”. Notice, that their horizontal component must be
equal to the partial derivative if our reasoning should work.

The right plot shows the same plane, represented as contour lines. Combining the “ascend vectors”
(or rather, the components that are not in z-direction), we get the gradient. (magenta)

We can visually see that it is orthogonal to the contour lines, which, for a plane, is the obvious direction
of steepest ascent.

Notice, that for the right plot, the axes are equally scaled.

Additionally, we notice, that going along the y-axis, the next contour line is reached faster than by going
along the x-axis. Of course, this means, that the plane is steeper in y-direction than in x-direction. This
is also, why the “y-ascend-vector” (blue) is longer than the “x-ascend-vector”. (Which also goes for
their horizontal components.)

En passant, we realized another important fact.

The direction of steepest ascent, i. e. the direction of the gradient is orthogonal to a plane’s contour
line.

In the next chapter of this series, we will show that this holds for other functions, as well.
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(Finally) Finding extrema

Now, we can finally turn to finding actual (local) extrema. Admittedly, there is no longer much to it.

Recall our tangent plane equation

x⃗ = x⃗0 + λu⃗x + µu⃗y,

where

u⃗x =


1
0
ζx

 and u⃗y =


0
1
ζy

 .

Using

x⃗ =


x

y

z

 and x⃗0 =


x0

y0

z0

 ,

we can rewrite the plane equation to:

z = z0 + ζx (x − x0) + ζy (y − y0)

The gradient of this plane “function” is

∇z =
(

∂z
∂x
∂z
∂y

)
=
(

ζx

ζy

)
.

Now, a horizontal plane must not change its z-value, meaning the z-components of the direction
vectors u⃗x and u⃗y must be 0:

ζx = ζy = 0

In turn, this means, the gradient has to be 0, as well.

This makes sense, as the gradient being the zero-vector (which is the only one that has no orientation)
implies, that there is actually no direction of steepest ascent. (Remember, this is, where the gradient
points to, generally speaking.)
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After all, the only way that there is no steepest ascent direction in a plane is, if there is no ascend at all,
which is indeed what we want.

I might be repeating myself, but remember that the gradient of a function at a given point is identical
to its tangent plane’s gradient.

Therefore, we obtain the required condition for a local extremum of a function at a given point to be
the gradient being zero:

f(x⃗E) being an extremum ⇒ ∇f |x⃗=x⃗E

!= 0

Notice, this equation, again, holds for higher dimensions. The steepest-ascent-property had
been derived for a general N -dimensional case.

The condition for an extremum is always a tangent hyperplane (the N -dimensional pendant to
the regular plane, as mentioned) having no ascent, i. e. there is no direction of steepest ascent
which in turn, means, that the gradient must become the N -dimensional zero-vector.

This is equivalent to all partial derivatives being zero.

HEADS UP!

We have only derived a required condition for a local extremum. A sufficient condition would also
require to check, whether the function actually in- or decreases into either direction.

Examples

Let us doing some example calculations.

z = 4 − x2 − y2

We had started this whole article with

z(x, y) = 4 − x2 − y2.

The gradient is:
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∇z =
(

−2x

−2y

)
= −2

(
x

y

)

There is one way to get a zero-vector:

∇z|x⃗=x⃗E
= −2

(
xE

yE

)
!=0⃗

⇔ xE = 0, yE =0

This is the extremum we expected. (In fact, this is a maximum.)

z = (x2 + y2)2 − x2 − y2 + 1
4
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Figure 14: The “mexican-hat”-function.

This function, which is also sometimes known as a mexican hat function, is a bit more intricate:

z(x, y) =(x2 + y2)2 − x2 − y2 + 1
4

=x4 + y4 + 2x2y2 − x2 − y2 + 1
4

Next, let us calculate the gradient:
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∇z =
(

4x3 + 4xy2 − 2x

4y3 + 4x2y − 2y

)
=
(

2x ·
(
2x2 + 2y2 − 1

)
2y ·

(
2y2 + 2x2 − 1

))

In the interest of thoroughness, here is an example gradient plot.

x

y

Figure 15: The “mexican-hat”-function and its gradient.

For the extrema, we get the rather obvious case of

(xE , yE) = (0, 0),

which actually is a local maximum.

But now, look at the term inside the inner brackets:

2xE
2 + 2yE

2 − 1

This one is identical in both components and can also become zero to give us a set of critical points:

2xE
2 + 2yE

2 − 1 !=0

xE
2 + yE

2 =1
2

This is just the equation of a circle. In particular, it is the blue line in the contour plot.

However, let us insert that into the original function:
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z(xE , yE) =


= 1

2︷ ︸︸ ︷
xE

2 + yE
2


2

−


= 1

2︷ ︸︸ ︷
xE

2 + yE
2

+ 1
4

=
(1

2

)2
−
(1

2

)
+ 1

4

=1
4 − 1

2 + 1
4

=0

As we can see, all the points on the circle get us to the same value for the function. (z(xE , yE) = 0)

Thus, none of these points truly is a minimum, as there are always two directions to go (along the
circle, that is), where the function does not increase but stays constant.

On the other hand, all points on the circle lead to the lowest possible value for the function. So, one
could argue, that our definition of a minimum (or an extremum, in general) is too narrow.

After all, nature has that tendency to minimize things. If the mexican-hat-function were a landscape
and right at the top of the central hill we had a fountain, the water would flow down the hill and hit
one of the points on the circle before finding a resting position.

Of course, we cannot just fill that valley with water. May be we have a fountain that vertically
shoots droplets into the air.

These droplets might be ejected with a low rate, so one that reaches the bottom of the valley can
stay there and evaporate, before the next one emerges.

If you really want to simulate the mathematically optimal analogy by a physical setup, you’d have
to make sure, that the droplet’s friction with the hill is large enough to basically drain all its kinetic
energy, while simultaneously being small enough, so that the droplet can still follow gravity to the
bottom, creating a trajectory that always follows the steepest descent, i. e. the negative gradient.

z = sin x · cos y

Let’s talk about another one:

z(x, y) = sin x · cos y

The gradient is:
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∇z =
(

cos x · cos y

− sin x · sin y

)

To find an extremum, both components must be zero.

Since the cosine of a number and the sine of that number can never be 0 simultaneously, we can only
get a zero vector as the gradient if

sin x = 0, cos y = 0 or cos x = 0, sin y = 0.

Thus, we could have the following sets of solutions:

(A) x = nπ, y = π

2 + mπ, n, m ∈ Z

(B) x = π

2 + nπ, y = mπ, n, m ∈ Z

Let us consider these sets individually. Set A implies sin x = 0 and thus:

z(xA, yA) = 0.

But since this would hold for every value of y, we once again cannot have a true extremum.

Here, these are saddle points. (Or mountain passes, if we once again use the analogy of a hilly land-
scape.)

Now, let us look at situation B.

z(xB, yB) = sin (xB) · cos (yB)

= sin
(

π

2 + nπ

)
· cos (mπ)

Both, the sine and the cosine can give us values of +1 or −1. Thus, these are the values, the function
can assume:

z(xB, yB) = ±1

Obviously, z = −1 are the minima and z = +1 are the maxima.
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f = (x − x0)2 − (y − y0)2 + (z − z0)2

Let us step it up one dimension.

f(x, y, z) = (x − x0)2 + (y − y0)2 + (z − z0)2

We obtain the gradient to be

∇z = 2


x − x0

y − y0

z − z0

 .

The critical point for an extremum is, therefore:


xE

yE

zE

 =


x0

y0

z0


Now, let us check, if this is indeed an extremum.

To do that, let us shift away from the candidate point by a small step of length h (i. e. h is positive) into
either direction.

The direction vector can simply be the unit vector in r-direction in spherical coordinates:

e⃗r =


sin θ · cos ϕ

sin θ · sin ϕ

cos θ


We can do that shift by setting

x⃗ = x⃗E + he⃗r

and let h become infinitely small.

That gets us to:
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z(x⃗E + he⃗r) = (xE + h sin θ · cos ϕ − x0)2

+ (yE + h sin θ · sin ϕ − y0)2

+ (zE + h cos θ − z0)2

= (h sin θ · cos ϕ)2 + (h sin θ · sin ϕ)2 + (h cos θ)2

=h2
[
(sin θ · cos ϕ)2 + (sin θ · sin ϕ)2 + (cos θ)2

]
=h2 · e⃗r

2

=h2

Indeed, we don’t get any dependency on the direction. Our function’s value around our candidate
point just depends on the length of the step we do into either direction.

Therefore, going away from our candidate point will always increase the function’s value and we really
have a true minimum.

Summary

This article was quite a feat.

Indeed, it is the longest one I have written so far (that also took me the largest amount of time) and we
had to introduce a huge amount of concepts and ideas that will accompany us going forward in this
series of articles and quite possibly, also in others.

Thus, I want to summarize the mayor points for you.

• We discussed how to construct an equation for a (hyper)plane.

• We reasoned, that we can always find a hyperplane that is tangent to a function at a given point.

• To find extrema, we could use the required condition, that moving inside the tangent hyperplane
must not change the “function’s coordinate”, i. e. there can be no ascend or descent in either
direction.

• To characterize the rate of change of a function into either coordinate’s direction, we introduced
partial derivatives. The partial derivative with respect to any coordinate is what we would get
as a total derivative if all the other variables were just constants.

• We highlighted the fact, that one should be careful about what really is a depending variable
and what is an independent variable when evaluating partial versus total derivatives.
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Furthermore, we have discussed the relation between total differentials, partial derivatives
and the chain rule.

• Using partial derivatives, we could construct a tangent hyperplane. This came with the insight,
that a partial derivative of a function, evaluated at a given point, is equal to the partial derivative
of the tangent hyperplane at this point.

• We defined the gradient vector of a function using partial derivatives.

• We could prove, that the gradient will always point into the direction of steepest ascent.

• With the steepest-ascend-property of the gradient, we could reason, why at any local extremum,
the gradient vector must be the zero-vector.

• Finally, we managed to find actual extrema of some example functions using the gradient.

Now, let that sink in for a moment and make sure, you have a decent understanding of everything inside
this article - especially the distinction between partial and total derivatives, as this is fundamental for
almost everything we will be doing going forward.
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