
Straight-line walk direction between two
points on earth

An article posted on bathtubphysics.de

Jan Bergner

2022-12-27

https://bathtubphysics.de

Straight-line walk direction between two points on earth

The problem

Maybe we are hiking or maybe we are sailing the ocean. Suppose we just got your GPS location and we
know the coordinates of our destination, as well.

T

S

Figure 1: Suppose we are at startpoint S and want to reach target T on earth’s surface. The shortest
possible path is along the red great circle.

In the sketch, we are sitting at point S on earth’s surface and want to reach target point T .

The shortest possible path is along the red great circle. This great circle is what we need to find.

What is our optimal course (or heading) to reach our target on the shortest possible path?

To answer this question, we simplify it by assuming no obstacles in our path. We can always follow a
straight line. (Or rather, a great circle, since earth is approximately a sphere.)

Definitions

Suppose, you are on earth’s surface at a starting point S⃗ = RS⃗0 with latitude βS and longitude λS . R

is earth’s radius.

2 / 25

Straight-line walk direction between two points on earth

Your target is T⃗ (λT , βT) =: RT⃗0.

Notice, that the “auxiliary vectors” S⃗0 and T⃗0 are pointing in the same direction as S⃗ and T⃗ , respectively,
but are shortened to a length of 1. We call these normalized location vectors.

S

TA

T ′
A

TB

T ′
B

TA,0 TB,0

Figure 2: The situation. Suppose you are located at S and want to reach a point T . (TA or TB in this
case.)

The above sketch illustrates the situation. We see the great circle around earth, defined by our current
location and our destination. The current location is S (the olive point to the left) and we want to reach
the point T (red). However, we need to consider two cases, seperatly.

That’s why this sketch shows two points TA and TB . The former is closer to you than a quarter of earth’s
circumference (left to the dotted green line) and the latter is further away (right to the dotted green
line). In other words, we consider the cases ∠S⃗, T⃗ < 90◦ and ∠S⃗, T⃗ > 90◦, seperately.

If your location S were the north pole, TA would correspond to your destination also being in
the northern hemisphere while TB would be in the southern hemisphere. The dotted green line
would be the equator.

The dashed olive line is the tangent to the great circle through our current position S.

With this, any vector D⃗′ pointing from S0 in the direction of our target will be parallel to this line.

Furthermore, this vector D⃗′ will be perpendicular to our own location vector S⃗, since it is a tangent
vector.

Knowing any valid “direction vector” D⃗′ that can uniquely specify the tangent, all we have to do is find
out whether to go “up” or “down”. (I. e. the proper orientation for D⃗′.)

3 / 25

Straight-line walk direction between two points on earth

Let us start by constructing an auxiliary direction vector D⃗′ by making the target vector T⃗ “longer”, so
it will hit the tangent straight line specified by D⃗′ in point T ′

A or T ′
B (the orange points in the sketch),

respectively:

D⃗′ = T⃗ ′ − S⃗.

Now, just look at the two situations. T⃗B points away from the tangent and therefore, we will need to
flip it (i. e. multiply by −1) in addition to making it longer.

Unfortunately, in this case the auxiliary direction vector D⃗′ will point in the direction opposite to the
shortest path along the great circle. We will have to flip this one, as well.

For situation A however, it all works out fine and D⃗′ has the right orientation.

Constructing the proper direction vector

Let us take a step back for now and find out how to rescale the vector T⃗ , properly.

We can set

T⃗ ′ = 1
η

T⃗

and make η the scaling factor. (Putting it into the denominator instead of the numerator will prove
beneficial going forward. But of course, you could also just put it as a factor in front of T⃗ .)

That way, we can require orthogonality with S⃗ for

D⃗′ = 1
η

T⃗ − S⃗

like so:

0 !=S⃗ · D⃗′

=1
η

T⃗ · S⃗ − S⃗2

=R2
[1

η
T⃗0 · S⃗0 − 1

]
⇔ η =T⃗0 · S⃗0

4 / 25

Straight-line walk direction between two points on earth

This is a nice and simple result. η is just the scalar product of the two normalized location vectors.

Incidently, this is equal to the cosine of the angle between the two vectors:

η = cos
(
∠S⃗0, T⃗0

)

This means that η actually could be equal to 0! (If the angle is exactly equal to 90◦.)

Then, our auxiliary direction vector strictly speaking is undefined due to a 0 in the denominator.

However, this is just due to our construction of the direction vector and not a “real” singularity. If we
move our target or start point an infinitely small step along the great circle, this won’t be a problem,
anymore and thus, we ignore this complication for now.

The next step is to make sure, the direction vector actually has the right orientation.

As stated before, we can do that by flipping the vector D⃗′, if our target point is in “the other hemi-
sphere”.

This is the case when η < 0 and thus, we can simply use the sign function σ(η), defined as:

σ(η) =


−1 η < 0

0 η = 0

+1 η > 0

The definition σ(0) = 0 is only a formality as we had excluded this case, before.

Notice, that this implies

η = σ(η) · |η| .

With this definition, we can make sure, that a direction vector D⃗ will have the proper orientation by
setting:

D⃗ =σ(η)D⃗′

=σ(η)
(1

η
T⃗ − S⃗

)

5 / 25

Straight-line walk direction between two points on earth

Let us normalize the direction vector to a length of 1:

D⃗0 = 1∣∣∣D⃗∣∣∣ · D⃗

=σ(η)
1
η T⃗ − S⃗√

(σ(η))2
(

1
η T⃗ − S⃗

)2

=σ(η)
R

(
1
η T⃗0 − S⃗0

)
√

R2
(

1
η T⃗0 − S⃗0

)2

=σ(η)
1
η T⃗0 − S⃗0√(
1
η T⃗0 − S⃗0

)2

=σ(η)
η

T⃗0 − ηS⃗0√
1
η2 T⃗0

2 − 2
η T⃗0S⃗0 + S⃗0

2

=σ(η)
σ(η)

T⃗0 − ηS⃗0

|η|
√

1
η2 − 2

η · η + 1

= T⃗0 − ηS⃗0√
η2

(
1
η2 − 1

)
= T⃗0 − ηS⃗0√

1 − η2

Thus, the normalized direction vector D⃗0 is:

D⃗0 = T⃗0 − ηS⃗0√
1 − η2

Notice, this vector is well-defined for η = 0!

In fact, if η = 0, D⃗0 = T⃗0, which is indeed, the right answer to our question of which direction to go,
also considering orientation.

6 / 25

Straight-line walk direction between two points on earth

Isn’t that neat? With the normalized direction vector D⃗0, we get rid of the distinction between the
cases, indicated by σ(η) while still determining the right direction. Furthermore, normalization is
inherently useful, itself, and as a bonus, we have handled the previously excluded case of η = 0 as a
“by-product”.

I guess, this is what is called killing three birds with one stone!

Position vectors in spherical coordinates

We have been talking quite a bit about the vectors S⃗ and T⃗ that specify the location of a corresponding
point on earth’s surface.

Now, let us express them in terms of longitude λ and latitude β.

There are multiple possible conventions on how to choose two angles λ and β that uniquely describe
a point on a sphere’s surface, but there is a standing convention for earth.

P

λ

β

Figure 3: Sketch of earth’s coordinate frame.

In the sketch, the 0◦-meridian (see below) is green, while the equator is dark blue. The coordinates λ

and β describe point P .

In particular, picture a cartesian coordinate frame whoose origin coincides with earth’s center. The
z-axis passes through the poles, going from south to north.

The equator resides in the x-y-plane.

Next, we can define the latitude β as the angle between a location vector (like P⃗ , S⃗ or T⃗) and the
x-y-plane. By convention, β is positive if we describe a point in the northern hemisphere and it is

7 / 25

Straight-line walk direction between two points on earth

negative if we deal with the southern hemisphere.

With this convention, we can express the z-coordinate as

z = R sin β.

Lastly, we will have to decide on where to place our x- and y-axes.

Once again, there is a convention based on history. In particular, the British Royal Navy had an obser-
vatory in Greenwich, London and defined that to be on the 0◦- or prime-meridian. (I. e. they decided
that the semi-circle-arc from the north pole to the south pole through that observatory should be 0
degrees longitude.)

For some technical reasons, the modern reference meridian slightly varies from that historic choice,
but still, this is the origin of the modern convention.

Anyways, the 0◦-meridian will hit the equator at some point, which is the point the x-axis of our
coordinate frame will go through. In particular, it will come from outside earth, hit the point on earth’s
surface that is exactly opposite to the 0◦-meridian-equator-intersection (i. e. the 180◦-meridian-
equator-intersection), will go through earth’s center, i. e. the coordinate frame’s origin and will leave
earth again at the 0◦-meridian-equator-intersection.

The y-axis will then be orthogonal to the x- and z-axes and also go through the origin. As is, again,
convention, when looking in positive x-direction, the y-axis will come from the right and go to the
left. (Meaning it hits earth at the 270◦-meridian, goes through earth’s center and leaves through the
90◦-meridian.)

Thus, if we start at a point on the x-axis that has a positive coordinate value, we can rotate it 90◦

counterclockwise around the z-axis to reach a point on the y-axis with an also positive coordinate.
Rotating again gets us to the negative x-axis.

This convention means that our longitude angle will increase when we walk to the east. What’s more, A
full circle has 360◦ and therefore, the 360◦-meridian will be identical to the 0◦-meridian.

If someone would be interested in more details, they might as well start on wikipedia.

We can finally describe our locations S and T in terms of longitude and latitude. The following is the
example for S. T is analogous. (Just replace the index S by an index T .)

8 / 25

https://en.wikipedia.org/wiki/Prime_meridian_(Greenwich)
https://en.wikipedia.org/wiki/IERS_Reference_Meridian
https://en.wikipedia.org/wiki/Geographic_coordinate_system

Straight-line walk direction between two points on earth

S⃗ = R


cos λS · cos βS

sin λS · cos βS

sin βS

 = R · S⃗0

Local two-dimensional coordinate frame in S

Let us get back to our actual problem.

From a navigational perspective, we cannot move freely in three dimensions but only two, since we
are constrained to earth’s surface.

Thus, it makes sense to define a local two-dimensional coordinate frame at our current location S.

To be precise, we can define a local north vector that will point along earth’s surface to the north pole
and similarly, a local east vector that points right to the east. The former will mean the longitude λS

being kept constant while the latter means an unchanged latitude βS .

That makes the north vector N⃗S simply the vector increasing βS , i. e. it is the derivative of S⃗ with
respect to βS .

We can also use S⃗0 instead of S⃗ to get a normalized north vector, right away.

N⃗S = ∂

∂βS
S⃗0

= ∂

∂βS


cos λS · cos βS

sin λS · cos βS

sin βS



=


− cos λS · sin βS

− sin λS · sin βS

cos βS



To prove that this vector is normalized, we can square it to find its length to be 1:

9 / 25

Straight-line walk direction between two points on earth

N⃗S
2 =




− cos λS · sin βS

− sin λS · sin βS

cos βS




2

= (− cos λS · sin βS)2

+ (− sin λS · sin βS)2

+ (cos βS)2

= cos2 λS · sin2 βS

+ sin2 λS · sin2 βS

+ cos2 βS

We can collect like terms and apply the Pythagorean trigonometric identity

sin2 x + cos2 x = 1 :

N⃗S
2 = cos2 λS · sin2 βS

+ sin2 λS · sin2 βS

+ cos2 βS

=
[
cos2 λS + sin2 λS

]
· sin2 βS + cos2 βS

= sin2 βS + cos2 βS

=1

Indeed, N⃗S is normalized.

Now, let us calculate the local east vector E⃗′
S , again using the derivative of S⃗0, but this time with respect

to λS :

10 / 25

https://en.wikipedia.org/wiki/Pythagorean_trigonometric_identity

Straight-line walk direction between two points on earth

E⃗′
S = ∂

∂λS
S⃗0

= ∂

∂λS


cos λS · cos βS

sin λS · cos βS

sin βS



=


− sin λS · cos βS

cos λS · cos βS

0



To normalize this one, we have to divide by cos βS :

E⃗S = 1
cos βS

E⃗′
S

=


− sin λS

cos λS

0



Let’s see, whether these two vectors are orthogonal:

N⃗S · E⃗S =


− cos λS · sin βS

− sin λS · sin βS

cos βS

 ·


− sin λS

cos λS

0


= [− cos λS · sin βS] · [− sin λS]

+ [− sin λS · sin βS] · [cos λS]

+ cos βS · 0

= cos λS · sin βS · sin λS − sin λS · sin βS · cos λS

=0

Indeed, the normalized local noth- and east-vector are perpendicular and we can use them to define a

11 / 25

Straight-line walk direction between two points on earth

local two-dimensional coordinate frame at point S to define directions on earth’s surface.

To be precise, these vectors will span a tangent plane to earth’s surface through S. Since our normalized
direction vector D⃗0 also specifies a tangent straight line, it must reside inside this plane.

Finally, we can check the scalar products between the local north or east vector and the normalized
position vector S⃗0.

N⃗S · S⃗0 =


− cos λS · sin βS

− sin λS · sin βS

cos βS

 ·


cos λS · cos βS

sin λS · cos βS

sin βS


= [− cos λS · sin βS] · [cos λS · cos βS]

+ [− sin λS · sin βS] · [sin λS · cos βS]

+ [cos βS] · [sin βS]

= − cos2 λS · sin βS · cos βS

− sin2 λS · sin βS · cos βS

+ cos βS · sin βS

= cos βS · sin βS ·
[
− cos2 λS − sin2 λS + 1

]
︸ ︷︷ ︸

=0

=0

Now, we check the east vector:

E⃗S · S⃗0 =


− sin λS

cos λS

0

 ·


cos λS · cos βS

sin λS · cos βS

sin βS


= cos βS · [− sin λS · cos λS + cos λS · sin λS]︸ ︷︷ ︸

=0

=0

So, the local north and east vector are orthogonal to S⃗0 and to each other.

12 / 25

Straight-line walk direction between two points on earth

Summary for the local coordinate frame

We found the normalized local north and east vectors to be:

N⃗S =


− cos λS · sin βS

− sin λS · sin βS

cos βS



E⃗S =


− sin λS

cos λS

0



They are normalized:

N⃗S
2 = E⃗S

2 = S⃗0
2 = 1

And they are orthogonal to each other and to S⃗0:

N⃗S · E⃗S = N⃗S · S⃗0 = E⃗S · S⃗0 = 0

Actually finding the right heading

We can now rewrite the normalized direction vector D⃗0 as a linear combination of the local north and
east vector:

D⃗0 =: νN⃗S + εE⃗S

Since N⃗S · E⃗S = 0, we can find the parameters ν and ε using the following products:

D⃗0 · N⃗S = ν

1︷︸︸︷
N⃗S

2 +ε

0︷ ︸︸ ︷
E⃗S · N⃗S ⇔ ν = D⃗0 · N⃗S

D⃗0 · E⃗S = ν N⃗S · E⃗S︸ ︷︷ ︸
0

+ε E⃗S
2︸︷︷︸

1

⇔ ε = D⃗0 · E⃗S

13 / 25

Straight-line walk direction between two points on earth

We can insert for D⃗0. (We do both equations at once.)

ν
ε| =D⃗0 ·

∣∣∣N⃗S

E⃗S

∣∣∣
= 1√

1 − η2

(
T⃗0 − ηS⃗0

)
·
∣∣∣N⃗S

E⃗S

∣∣∣
= 1√

1 − η2

T⃗0 ·
∣∣∣N⃗S

E⃗S

∣∣∣ − η · S⃗0 ·
∣∣∣N⃗S

E⃗S

∣∣∣︸ ︷︷ ︸
0


The second summand is 0 by perpendicularity.

Side note:

Let us replace N⃗S and E⃗S by their derivative-definition. (Notice, T⃗0 is independent of the derivative
variables.)

ν
ε| = 1√

1 − η2 T⃗0 ·
∣∣∣N⃗S

E⃗S

∣∣∣
= 1√

1 − η2 T⃗0 ·
∣∣∣∣∣ ∂

∂βS
S⃗0

1
cos βS

∂
∂λS

S⃗0

∣∣∣∣∣
= 1√

1 − η2 ·
∣∣∣∣∣ ∂

∂βS
(T⃗0·S⃗0)

1
cos βS

∂
∂λS

(T⃗0·S⃗0)

∣∣∣∣∣
= 1√

1 − η2 ·
∣∣∣∣ ∂

∂βS
η

1
cos βS

∂
∂λS

η

∣∣∣∣
Thus, we finally obtain:

ν = 1√
1 − η2

∂η

∂βS

ε = 1√
1 − η2

1
cos (βS)

∂η

∂λS

We managed to reduce our equations to the one fundamental object η, which is an interesting
insight on its own. We need latitudes and longitudes of our start and target point and then, only
construct the η-function to solve our problem.

However, the vector product definitions will turn out to be more useful going forward:

To summarize:

14 / 25

Straight-line walk direction between two points on earth

ν = 1√
1 − η2 T⃗0 · N⃗S

ε = 1√
1 − η2 T⃗0 · E⃗S

Now, how do ν and ε actually help us?

Ultimately, we aim for a heading (or a course, but in any case, the compass direction to our target),
which is an angle ϕ telling us our direction.

In fact, ϕ is the angle between the north vector and the direction vector, when going clockwise around
the compass. In particular,

ϕ direction ϕ direction

0◦ north 180◦ south

45◦ north-east 225◦ south-west

90◦ east 270◦ west

135◦ south-east 315◦ north-west

With this fact and the north, east and direction vector being normalized, we can deduce

ν = cos ϕ

and

ε = sin ϕ.

Unfortunately, we cannot simply compute either of the two parameters and just take the inverse cosine
or inverse sine function, since two angles between 0◦ and 360◦ can have the same sine- or cosine-value.
(In fact this is always the case, if the sine- or cosine value do not happen to be equal to 1 or −1.)

We cannot obtain an unambiguous result like that!

Since we can calculate both, the sine and cosine of ϕ, we can indeed find the one unambiguous angle
that satisfies both equations. There is more than one way to do this, but I will go with the tangent
approach. (This time, we are not referencing the straight line but the trigonometric function by the
same name.)

15 / 25

https://en.wikipedia.org/wiki/Heading_(navigation)

Straight-line walk direction between two points on earth

The heading using the tangent function

We can divide ε by ν to find

ε

ν
= sin ϕ

cos ϕ
= tan ϕ.

The tangent of an angle is a bit special, as it is not periodic in 360◦ but in 180◦.

In fact, let us plot the tangent function and the inverse tangent function, the so-called arctangent
function:

−200 −100 0 100 200

−10

0

10

φ

ta
n
φ

Figure 4: The tangent function. The angle ϕ is in degrees.

This is the tangent function.

As we can see, it is periodic in 180◦.

If we only consider the range ϕ ∈ (−90◦, 90◦), we have a bijection, meaning we can invert it here. This
is, indeed, the “branch” that is used for the arctangent function definition:

16 / 25

Straight-line walk direction between two points on earth

−15 −10 −5 0 5 10 15

−100

−50

0

50

100

x

ar
ct
an

x

Figure 5: The arctangent function.

Here, we see the arctangent function. (The principal branch, that is.)

As we can see, the arctangent values range from −90◦ to 90◦. (−90◦ corresponds to west.)

Therefore, using the plain arctangent function, we will always get a result going to some degree to the
north.

But what if we actually need to go south?

Well, we need to go into the exact opposite direction from what we have calculated, i. e. we have to
add 180◦ to our heading angle ϕ.

Let us get back to our sign function.

If

σ(ν) = 1,

we can simply use the result from our arctangent function, but if

17 / 25

Straight-line walk direction between two points on earth

σ(ν) = −1,

we need to add 180◦.

In any case, we must shift any resulting ϕ by 360◦, until it is truly in between 0◦ and 360◦.

Going forward, we ignore this minor complication.

We can encapture this in the following formula:

ϕ = arctan
(

ε

ν

)
− 1

2 [σ (ν) − 1] · 180◦

This is, indeed, our “result”. But recall, that we do not have explicit representations of ν and ε, yet.

We define the argument of the arctangent-function as x:

x := ε

ν

=
1√

1−η2
· 1

cos βS
· ∂η

∂λS

1√
1−η2

· ∂η
∂βS

=
∂η

∂λS

cos βS · ∂η
∂βS

This is nice. We actually got rid of the parameter η. Recall the vector representations

η =T⃗0 · S⃗0,

∂

∂λS
η =T⃗0 · ∂

∂λS
S⃗0 = T⃗0 · E⃗′

S

∂

∂βS
η =T⃗0 · ∂

∂βS
S⃗0 = T⃗0 · N⃗S

Sweet. We know all these vectors already!

We can do some additional simplifications:

18 / 25

Straight-line walk direction between two points on earth

x =
∂η

∂λS

cos βS · ∂η
∂βS

= T⃗0 · E⃗′
S

cos βS · T⃗0 · N⃗S

= T⃗0 · E⃗S

T⃗0 · N⃗S

Isn’t this amazing? After all the pain we had to endure in calculating this result, it finally boils down to
two vector products, their ratio and applying the arctangent function.

Now, let’s roll up our sleeves and do this!

T⃗0 · E⃗S =


cos λT · cos βT

sin λT · cos βT

sin βT

 ·


− sin λS

cos λS

0


= cos βT · [− sin λS · cos λT + cos λS · sin λT]

T⃗0 · N⃗S =


cos λT · cos βT

sin λT · cos βT

sin βT

 ·


− cos λS · sin βS

− sin λS · sin βS

cos βS


= sin βS · cos βT · [− cos λS · cos λT − sin λS · sin λT]

+ sin βT · cos βS

Next, we can consider two really useful theorems:

sin (x ± y) = sin x · cos y ± cos x · sin y

cos (x ± y) = cos x · cos y ∓ sin x · sin y

This implies:

19 / 25

Straight-line walk direction between two points on earth

− sin λS · cos λT + cos λS · sin λT = sin (λT − λS)

− cos λS · cos λT − sin λS · sin λT = − cos (λT − λS)

Now, our equations simplify quite a bit:

T⃗0 · E⃗S = cos βT · sin (λT − λS)

T⃗0 · N⃗S = − sin βS · cos βT · cos (λT − λS) + sin βT · cos βS

Interesting! Our result will not depend on the individual longitudes of target and start point but only
on their difference.

Let us think about why that makes sense.

As pointed out, chosing a particular λ = 0◦, i. e. a 0◦- or prime-meridian was arbitrary. In fact, it
is a mere convention.

This means, that we could have chosen the meridian of our start point to be 0◦ just as easily, i. e.
introduce a new coordinate frame λ′ = λ − λS .

If we did that, the target meridian would become exactly λ′
T = λT − λS , i. e. our result depends

on the target meridian λ′
T , but not on the start meridian λ′

S , as this one would be 0◦ by definition.

But let’s get back to work, now.

We wanted to calculate

x = ε

ν

= T⃗0 · E⃗S

T⃗0 · N⃗S

= cos βT · sin (λT − λS)
sin βT · cos βS − sin βS · cos βT · cos (λT − λS)

= sin (λT − λS)
tan βT · cos βS − sin βS · cos (λT − λS) ,

= 1
cos βS

· sin (λT − λS)
tan βT − tan βS · cos (λT − λS)

which, sadly, is the end of the rope.

Unfortunately, we are still not done. Recall our formula for ϕ:

20 / 25

Straight-line walk direction between two points on earth

ϕ = arctan (x) − 1
2 [σ (ν) − 1] · 180◦

We need to find σ(ν).

Since

ν = 1√
1 − η2 · T⃗0 · N⃗S ,

we need to check the sign of this expression.

However, we can just drop the first factor, because the square-root-term is always positive.

This implies:

σ(ν) =σ
(
T⃗0 · N⃗S

)
=σ (sin βT · cos βS − sin βS · cos βT · cos (λT − λS))

Let us pull the cosine terms of the latitudes in front. Since βS and βT only range from −90◦ to 90◦, the
cosines will always be positive and we can drop them, as well:

σ(ν) =σ (sin βT · cos βS − sin βS · cos βT · cos (λT − λS))

=σ (cos βS cos βT · [tan βT − tan βS · cos (λT − λS)])

=σ (tan βT − tan βS · cos (λT − λS))

Sadly, there is not much else to be simplified.

Let us therefore insert:

ϕ = arctan
(1

cos βS
· sin (λT − λS)

tan βT − tan βS · cos (λT − λS)

)
− 1

2 [σ (tan βT − tan βS · cos (λT − λS)) − 1] · 180◦

Discussion of the result

Personally, I always consider it satisfying if I can derive an explicit formula for something I want to
investigate.

21 / 25

Straight-line walk direction between two points on earth

However, in this case, this formula might be impractical.

With all those sine-, cosine-, and tangent-terms, this is not really something you can easily work out
without a calculator.

Calculation in the real world

If you are computer literate, you would probably write a short program that you provide the coordinates
βS , βT , λS and λT which would then construct the vectors T⃗0, N⃗S and E⃗S numerically to work this
out.

In fact, you can find a short and clumsy demo code at the end of this article.

Limitations

North and south pole

Notice, that the formula (and the algorithm) break down at the poles, because you cannot define an
umambiguous north vector there.

It is, however, clear that from any of the poles, you would “just” have to follow your target meridian to
get to your destination.

If you really wanted to use our formula, you should do one step into any arbitrary direction and go
from there.

Denominator being 0

The denominator T⃗0 · N⃗S being 0 is not really a problem, as long as you perform a limit, because then,
the whole argument of the arctangent-function goes to either +∞ or −∞, for which the arctangent
approaches either +90◦ or −90◦, respectively. (Meaning you can just go west or east.)

In this case, you just have to look at start and target longitude to find the right way. (However, this
might be something to consider in a computer algorithm.)

Basically, if T⃗0 · N⃗S = 0, check λT − λS . If it is smaller than 180◦, go eastwards. Otherwise, go west.

Small differences in latitude and longitude

Suppose your start and your target are only a few meters to kilometers apart.

22 / 25

Straight-line walk direction between two points on earth

In that case, the difference in longitudes and latitudes is small.

Let us check, what that does for our arctangent’s argument x. We will use the following approximations
for small values of h:

sin h ≈h

cos h ≈1

Notice, that these approximations only work for decently small values of h in radians.

Therefore, we temporarily express latitudes and longitudes in radians.

First, we write

∆λ = λT − λS ,

which is, by assumption, a small value. Thus, we start by approximating

x = 1
cos βS

· sin ∆λ

tan βT − tan βS · cos ∆λ

= sin ∆λ

tan βT · cos βS − sin βS · cos ∆λ

≈ ∆λ

tan βT · cos βS − sin βS

≈ ∆λ cos βT

sin βT · cos βS − sin βS · cos βT

≈ ∆λ cos βT

sin (βT − βS) .

In the last step, we once again used a trigonometric identity.

Approximation of the sine in the denominator yields:

x ≈ ∆λ cos βT

sin (βT − βS)

≈∆λ cos βT

∆β

≈ cos βT · ∆λ

∆β

23 / 25

Straight-line walk direction between two points on earth

Now, it does not matter anymore, whether we use radians or degrees, since converting between the
two just involves multiplying by a factor. And since we had to convert numerator and denominator
alike, the conversion factors would just cancel.

Let’s make this explicit:

tan ϕ ≈ cos βT · ∆λ

∆β

Without the cosine term, this would look like a case of “rise over run”. In fact, around the equator,
where the cosine is exactly 1, this fits best.

This is reflective of the fact, that a given meridian and the equator really are perpendicular, while for
any other latitude, this only holds for an infinitely small area.

That is, what is corrected for by the cosine term.

In any case, we need to do numerically precise calculations when using the exact formula, so we don’t
“approximate away” the real discrepancy between start and target.

If we cannot do that, we might be better off with this approximation.

Python code

I got around to write some rudimentary python code that gets the job done.

For the sake of simplicity, I hard-coded start point and destination point to be the city of Muenster,
Germany (where I happen to live) and the city of Cologne, Germany (which is my favourite, so naturally,
I want to go there).

There is no error-handling for “special” inputs like we discussed. Consider that an exercise for the
reader.

24 / 25

Straight-line walk direction between two points on earth

1 !/usr/bin/env python3
2
3 import numpy as np
4
5 def location_vector(latitude, longitude):
6 x = np.cos(longitude*np.pi/180.)*np.cos(latitude*np.pi/180.)
7 y = np.sin(longitude*np.pi/180.)*np.cos(latitude*np.pi/180.)
8 z = np.sin(latitude*np.pi/180.)
9 return np.array([x,y,z])

10
11 def north_vector(latitude,longitude):
12 x = - np.cos(longitude*np.pi/180.)*np.sin(latitude*np.pi/180.)
13 y = - np.sin(longitude*np.pi/180.)*np.sin(latitude*np.pi/180.)
14 z = np.cos(latitude*np.pi/180.)
15 return np.array([x,y,z])
16
17 def east_vector(longitude):
18 x = - np.sin(longitude*np.pi/180.)
19 y = np.cos(longitude*np.pi/180.)
20 return np.array([x,y,0])
21
22 def main():
23 # Cologne
24 beta_T=50.935173
25 lambda_T=6.953101
26 # Muenster
27 beta_S=51.961563
28 lambda_S=7.628202
29
30 # Location vector Cologne
31 vec_T = location_vector(beta_T,lambda_T)
32 # North and east vector Muenster
33 vec_N = north_vector(beta_S,lambda_S)
34 vec_E = east_vector(lambda_S)
35
36 epsilon = vec_T.dot(vec_E)
37 nu = vec_T.dot(vec_N)
38
39 # Heading angle
40 phi = np.arctan(epsilon/nu)*180/np.pi
41 if nu < 0:
42 phi = phi + 180
43
44 # Normalize heading angle
45 while phi < 0:
46 phi = phi + 360
47 while phi >= 360:
48 phi = phi - 360
49
50 print(phi)
51
52 if __name__ == "__main__":
53 main()

25 / 25

	The problem
	Definitions
	Constructing the proper direction vector
	Position vectors in spherical coordinates
	Local two-dimensional coordinate frame in S
	Summary for the local coordinate frame

	Actually finding the right heading
	The heading using the tangent function

	Discussion of the result
	Calculation in the real world
	Limitations
	Small differences in latitude and longitude

	Python code

