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Looking out of the crow’s nest

In ancient times, sailing ships had a high mast with a so-called “crow’s nest”, where a member of the
crew could climb up and had a good view over the ocean.

This raises a question.

How far can you see from the crow’s nest?

Assuming you know your altitude above the sea inside the crow’s nest, it is possible to calculate the
distance to the horizon. (Assuming Earth to be a perfect sphere, that is.)

Let us begin with a sketch.
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Figure 1: Sketch of the situation.
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https://en.wikipedia.org/wiki/Crow%27s_nest
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This sketch shows Earth in cyan, whoose radius is R. The ship is at the top position and its mast has
height h (red). The direct line of sight to the horizon (yellow) has length d and the actual distance to
the horizon (blue) is s. (I. e. the curved path that follows Earth’s surface.)

The exact solution

We are trying to find the length s of the path from the ship’s position to the horizon. This is simply:

s = Rφ

Notice, that we choose the angle φ to be in radians.

Furthermore, the (yellow) line of sight is orthogonal to the (cyan) radius of Earth at the horizon. Thus,
we get a right triangle between Earth’s center, the crow’s nest and the horizon and can make use of

cos φ = R

R + h
= 1

1
R(R + h)

= 1
1 + h

R

.

We can define

q := h

R
,

so the angle φ only depends on the ratio of h and R. With

φ = arccos
( 1

1 + q

)
,

we finally obtain the result:

s = R arccos
( 1

1 + q

)

Now, with Earth’s radius being R ≈ 6371km, a crow’s nest with a height of h = 15m yields a q-value
of

q ≈ 15m
6371km

≈ 2.35 · 10−6

and a distance to the horizon of
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s(h = 15m) ≈ 13.8km.

An approximate solution

Well, we found the solution - even an exact one - that we could be happy with. (If we have a calculator.)

However, we might want to be able to do a “quick estimate” in our heads. After all, the question of how
far we can see is not limited to a ship with a mast of constant height but we might also go for another
hike into the mountains and wonder about the area that is covered by our eyes.

Since we already made some approximating assumptions like Earth being a perfect sphere and ne-
glected additional effects like light bending inside the atmosphere, it would seem reasonable to
sacrifice a little more of the precision in order to ease the calculations. (In any case, as a physicist you
get used to stuff like that.)

Since we deal with a right triangle, we can use the Pythagorean theorem:

d2 + R2 =(R + h)2

=R2(1 + q)2

=R2(1 + 2q + q2)

As long as the angle φ is small, we can approximate:

s ≈ d

Inserting this and subtracting R2 on both sides of the equation yields:

s2 ≈R2(2q + q2)

⇒ s ≈R
√

2q + q2

=R
√

q
√

2 + q

Now, recall that we already had the example of h being 15 meters, which gave q ∼ 10−6, which is really
small compared to 2. (This reflects the fact that the height h is usually dead small compared to Earth’s
radius. Even on Mount Everest, we would still just get q ≈ 1.389 · 10−3 ≪ 1.)

Approximately, we can neglect q in the last square-root-term:
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https://en.wikipedia.org/wiki/Pythagorean_theorem
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√
2 + q ≈

√
2

This implies

s ≈
√

2Rh,

or, if we prefer actual numbers:

s ≈
√

2 · 6371
1000

√
h

1m
· 1km ≈ 3.560km ·

√
h

1m

In other words:

Take the square root of your height inmeters and multiply by 3.560 to get the horizon’s distance
to yourself in kilometers.

Without a doubt, this is a much easier result, but how long will it yield reasonably good approximations
to the “real” value?

At least with h = 15m, we again get s ≈ 13.8km, like calculated in the last section.

Comparing exact and approximate solution.

Well, to answer the limit af a “reasonably good approximation” to the real value, we have to start by
defining what “reasonably good” actually means.

Arbitrarily, we could say the discrepancy between exact solution se and approximate solution sa shall
always be smaller than 10%.

If we do that,

|sa − se|
se

<
1
10 .

As a matter of fact,

sa > se

for at least our relevant domain of q < 1. This could be verified, for example, by considering both to be
a function of q and doing a taylor series expansion to compare terms.
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https://en.wikipedia.org/wiki/Taylor_series
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Alternatively, we could simply plot the solution graphs and their difference graph to convince our-
selves:
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Figure 2: Approximate versus exact solution.
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https://www.wolframalpha.com/input?i=plot+%28sqrt%282x%29+-+arccos%281%2F%281%2Bx%29%29%2Cx%3D0..1%29
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Figure 3: Difference between approximate and exact solution.

Anyways, we wanted to know, how far we can move upwards, before we reach a 10%-error with our
approximation. Since we have convinced ourselves, that sa > se, we can drop the absolute value
bars:

1
10 =sa − se

se

⇔ se

10 =sa − se

⇔ 11
10se =sa

⇒ 11
10

[
R arccos

( 1
1 + q10

)]
=R

√
2q10

⇔ 11
10 arccos

( 1
1 + q10

)
=

√
2q10

This is the end of the rope for analytic calculations in the realm of real numbers.

Using Wolframalpha, we get
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https://www.wolframalpha.com/input?i=1.1*arccos%281%2F%281%2Bq%29%29%3Dsqrt%282q%29
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q10 ≈ 0.253,

which corresponds to

h10 ≈ 1612km.

To contain the error due to our approximation within 10%, we can go up for a little over 1
4 of

Earth’s radius!

For comparison, when the ISS is farthest away from Earth, it still only has a height of about
410km. Even the astronauts could use the approximation and the error due to this would be way
below 10%!

Now, let us consider a height that might have some practical meaning and assume a plane to be flying
at an altitude of 10km over a mountain of height 4000m.

sa(h = 10km) ≈356.959km

se(h = 10km) ≈356.726km

sa(h = 4000m) ≈225.760km

se(h = 4000m) ≈225.702km

From the plane, the error is only about 230m,where on themountain, it is less than 60m!

What can we learn from this?

This example illustrates the might of approximations in physics.
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https://en.wikipedia.org/wiki/International_Space_Station


Looking out of the crow’s nest

Regularly, approximations are the only thing enabling any kind of calculation. However, it should
always be considered, what impact an approximation has on the given problem. (Indeed, a crude
approximation might still be improved. This is a job for perturbation theory.)

In any case, it is reasonable to use approximations if the problem at hand simply does not allow to find
an exact solution, while also being a matter of circumstances.

Suppose you want to travel a distance of 1000km by car, driving at an average speed of 100kph. In
that case, an error of 10% means, that an already exhausting 10-hour-drive might become an 11-hour-
drive. However, if you go that distance by plane with an average speed of 800kph, you expect a trip of
1h 15min, which would take 7.5min longer - much less of a bummer.
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https://en.wikipedia.org/wiki/Perturbation_theory
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